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SUMMARY

A vertex-centred finite-volume/finite-element method (FV/FEM) is developed for solving 2-D shallow
water equations (SWEs) with source terms written in a surface elevation splitting form, which balances
the flux gradients and source terms. The method is implemented on unstructured grids and the numerical
scheme is based on a second-order MUSCL-like upwind Godunov FV discretization for inviscid fluxes and
a classical Galerkin FE discretization for the viscous gradients and source terms. The main advantages are:
(1) the discretization of SWE written in surface elevation splitting form satisfies the exact conservation
property (C-Property) naturally; (2) the simple centred-type discretization can be used for the source
terms; (3) the method is suitable for both steady and unsteady shallow water problems; and (4) complex
topography can be handled based on unstructured grids. The accuracy of the method was verified for both
steady and unsteady problems, including discontinuous cases. The results indicate that the new method is
accurate, simple, and robust. Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In the past two decades, the numerical models based on the non-linear shallow water equations
(SWEs) have attracted an upsurge of attention due to their wide applications in hydraulic, ocean
and environmental engineering: dam breaks, hydraulic jump, bore wave propagation, open channel
flows, tidal flows, etc. The generally applicable numerical approach should embody the following
necessary features: simulating discontinuous flows accurately; handling both steady and transient
flows; describing and incorporating complex topography; simulating both sub- and super-critical
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conditions; considering the effect of irregular bed topography and shear stress; enabling various
practical inflow/outflow conditions in the domain of interest.

An early major method is based on finite-difference discretization of SWEs using Cartesian
grids [1]. The lack of alignment of coordinate lines with boundaries can lead to inaccuracies
in the flow solution. An approach that overcomes this difficulty is the use of boundary-fitted
grids [2, 3], where the governing equations need to be transformed from Cartesian to curvilinear
coordinates. However, the system of equations is usually much more complicated in the transformed
coordinates. The finite-element methods (FEMs) [4, 5] are more convenient for complex geometries,
but they are relatively difficult to deal with discontinuities and the discretized non-linear algebraic
equations have to be solved by the iteration process. Alternatively, finite-volume (FV) methods
[6–9] with approximate Riemann solvers combine the simplicity of finite-difference methods with
the geometric flexibility of FEMs. These methods can obtain accurate numerical results and capture
discontinuities properly such as hydraulic jumps and bore waves. However, there remains the need
to generate a suitable boundary-conforming mesh for complex geometries. A preferable way is
to adopt an irregular, unstructured grid system. Recent work in this area has yielded some rather
impressive results using cell-centred FV methods [10–13] and vertex-centred FV methods [14].

However, additional problems appear in solving SWEs with source terms relevant to bed to-
pography and bed shear stress. For example, Ambrosi [15] observed that a problem occurred
when simulating still water above an uneven bed. The usual centred discretization of the source
terms leads to non-conservative scheme because of the imbalance between the flux gradients and
source terms. Bermúdez and Vázquez [16, 17] proposed upwind methods for the treatment of
the bed slope source terms. Hubbard and Garcia-Navarro [18] extended this numerical treatment
to higher-order TVD schemes. LeVeque [19] developed a high-resolution method to balance the
source terms and flux gradients. These methods not only improved the accuracy of the numerical
solution significantly, but also increased the complexity. Recently, Zhou et al. [20] indicated the
main error is caused by inaccurate reconstruction of water depth, and they developed a simple
surface gradient method (SGM) for treating source terms based on an accurate reconstruction of
the conservative variables at cell interfaces.

In this paper, we utilize another conservative hyperbolic version of the non-linear SWEs written
in a surface elevation splitting form (see, e.g. References [12, 21]), which properly balances the flux
gradients and source terms. It is proved that a stationary solution in terms of an exact ‘conservation’
property (C-Property [16]) can be obtained using a simple centred discretization of source terms.
The equations are discretized using a vertex-centred FV/FEM which has been successfully used
in solving compressible viscous flows [22, 23]. Unlike the FV method used before, the FV/FEM
is based on more robust mathematical theory and easy to establish the error estimates [24, 25].
A second-order MUSCL-like upwind Godunov FV method is used for the discretization of the
inviscid fluxes in the resulting numerical method, and a linear classical Galerkin FEM, which
is equivalent to the simple central-type discretization in code implementation, is applied to the
evaluation of viscous gradients and source terms. The construction of an approximate Jacobian (Roe
type) of the normal flux function is proposed. The time integration scheme employs the second-
order predictor–corrector method. The general inflow, outflow, wall and non-reflecting boundary
conditions are also discussed according to the characteristic theory. Results are presented for a
series of validation tests designed to verify the accuracy and applicability of the FV/FEM. The
tests include simulations of 1-D stationary problem, unsteady moving fronts (i.e. dam break), flow
recirculation (jet-forced flow in a reservoir), steady shock-type discontinuity (hydraulic jump), and
a quasi-steady problem with small perturbation.
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2. GOVERNING EQUATIONS

Vertical integration of the 3-D incompressible Navier–Stokes equations along with the assumptions
of a hydrostatic pressure and a vertically uniform horizontal velocity profile, results in the SWEs
written as the following conservative differential form [26]:
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where � is the free water surface elevation above a fixed reference water level, h = hb+� is the total
water depth, and hb is the partial depth between the fixed reference level and the bed surface (see
Figure 1). u and v are depth-averaged velocity components in the horizontal x- and y-directions,
respectively, ux , uy and vx , vy are derivatives of the depth-averaged velocity components. g is the
acceleration due to gravity, � the water density, fc the Coriolis parameter and � the kinematic
eddy viscosity coefficient. �bx and �by are the bed friction shear stresses in the x- and y-directions,
respectively, �wx and �wy are the surface shear stresses.

Usually, the ��/�t is written as �h/�t , and the term gh��/�x is split to give the hyperbolic
formulation (e.g. [7, 10])
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where Sox is the bed slope in the x-direction and zb the bed surface height. However, the split
of the free surface gradient term causes an imbalance between the source and flux gradient
components, and the centred discretization of the source terms leads to non-conservative scheme
[16]. A consequence of using the conventional methods is that even the still water cannot be

Figure 1. Definition for bed topography.
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calculated exactly. The difficulty can be overcome by upwind discretization of the source terms
[16–18], which balance the flux gradients and source terms. The main drawback of this method
is of its complexity. Another explanation for inaccuracies of the solution is the values of water
depth reconstructed are not exact at the cell interface when the usual high-resolution Godunov-type
methods are utilized with a centred discretization for the bed slope terms [20].

An alternative splitting and redistributing method for the term gh��/�x described in [12, 21] is
employed to overcome the above difficulty, which matches the idea of using water surface elevation
reconstruction [20] to balance the flux gradients and source terms

gh
��

�x
= 1

2
g
�(h2 − h2b)

�x
+ g�Sox (3)

The resulting formulation still retains the hyperbolic nature of the SWE, so the sophisticated
numerical methods for SWE in water depth form can be utilized only with a little modification,
such as the Roe scheme. The water surface elevation reconstruction is decoupled from bed surface
variation, which is always included in the water depth and should be considered carefully to
balance the flux gradients and source terms as in SGM [20]. Because we use surface elevation
to replace water depth in SWE, the centred-type discretization can be utilized for the bed slope
source terms like SGM, but not the complex upwind discretization. The new formulations can be
written as
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where Soy is the bed slope in the y-direction. The bed friction shear stresses are defined as
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where Cz is the Chezy friction coefficient and n the Mannings roughness coefficient.
And the SWE can be written in the vectorial form

�U
�t︸︷︷︸

temporal derivative

+ ∇ · F︸ ︷︷ ︸
inviscid fluxes

= �∇ · R︸ ︷︷ ︸
viscous terms

+ S︸︷︷︸
source terms

(6)
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where ∇ = i(�/�x) + j(�/�y), F=Fx i + Fyj, R=Rx i + Ryj, and
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We will consider the initial and boundary value problem (IBVP) (let � ⊂ R2 be the flow domain
and � be its boundary).

�U
�t

+ ∇ · F(U, X) = �∇ · R(U) + S(U, X), (X, t) ∈ �× R+

U(X, 0) =U0(X), X ∈ �
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(7)

where U0,U� and hb0 are specified functions, and focus on finding a weak solution of (7).

3. MIXED FINITE-VOLUME/FINITE-ELEMENT METHOD

The numerical method is a mixed FV/FEM using a second-order accurate monotonic upwind
scheme for conservation laws (MUSCL) on fully unstructured grids for 2-D SWE. The spatial
approximation combines an upwind FVM for the discretization of the non-linear inviscid terms
with a classical Galerkin (piecewise linear) FEM for the discretization of the viscous and source
terms, which is equivalent to a simple central-type discretization in code implementation.

3.1. Dual finite-volume mesh

The computational region � is assumed to be a polygonal bounded domain of R2. Let Th be a
standard FE triangulation of �, and lmax the maximal length of the edges in Th . A vertex of a
triangle � is denoted by Pi , and the set of its neighbouring vertices by N (i).

A dual FV mesh can be built such that there exists a bijective operator from the FE mesh
to the FV mesh and the FV mesh covers exactly the domain �. As shown in Figure 2, at each
vertex Pi , the control volume Ci is constructed as the union of the sub-triangles resulting from the
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Figure 2. Control volume Ci in 2D.

subdivision by means of the medians of each triangle of Th that is connected to Pi . The boundary
of Ci is denoted by �Ci and the unit vector of the outward normal to �Ci by ni = (nix , niy). The
union of all the constructed cells forms a non-overlapping partition of the domain �:

� =
ns⋃
i=1

Ci (8)

Also, the following discrete spaces are introduced:

Vh = {vh |vh ∈C0(�), vh |� ∈ P1, ∀� ∈Th}
Wh = {vh |vh ∈ L2(�), vh |Ci = vi = constant, i = 1, . . . , ns}

(9)

where P1 is the polynomials space of order 1 and ns the total number of vertexes.
For each cell Ci a characteristic function �i is defined as

�i (X) =
{
1 if X ∈Ci

0 otherwise
(10)

For any function f in Vh , it can be determined by the vertex Pi value f (Pi )
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where {�i }i=ns
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Finally, the natural bijection between the spaces Vh and Wh can be constructed as
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3.2. Weighted residual formulation

A weighted residual formulation of the IBVP is as follows: find U∈ (Vh)
3, ∀�h ∈Vh∫
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A mixed FV/FE (Galerkin) approximation can be constructed by using the usual piecewise
linear FE basis function �i as the test function for the viscous and source terms and applying the
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operator B to the left-hand side of (13) which lead to a mass-lumped weighted residual approach.
And the above equation is transformed into∫
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Here
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and ��
i is the restriction of �i to triangle �. Finally, we drop the right-hand side boundary integral

if we neglect the viscous stress effects on the boundary, so that (15) is simplified to
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3.3. Inviscid fluxes discretization

The inviscid fluxes can be evaluated by adopting upwind numerical fluxes at each cell edge. The
numerical flux function U of a first-order-accurate upwind scheme can be written as∑

j∈N (i)

∫
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The flux difference splitting or flux vector splitting techniques can be adopted here. In our im-
plementation, the upwind flux is obtained by solving a local Riemann problem in the direction
normal to the cell interface. The numerical flux function used in the Roe approximate Riemann
solver has the following form:

U(UR
i j ,U

L
i j ,ni j ) = 1

2 [F(UR
i j ) + F(UL

i j ) − |A|(UR
i j − UL

i j )] · ni j (18)

in which

|A| =R|K|L
where UR

i j and UL
i j are the reconstructed right and left Riemann states, respectively, at the cell

interface �Ci j between adjacent cell i and j . A is the flux Jacobian matrix evaluated using R and
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L, the right and left eigenvector matrix of A, respectively (see [12, 27] in detail). And K is the
diagonal matrix of the eigenvalues of A. The Jacobian matrix A is given by

A= �(F · n)

�U
=
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0 nx ny
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⎞
⎟⎟⎠ (19)

Following the technique used by Roe, we have searched for a modified matrix with eigenvalues
of the form

	̃1 = ũnx + ṽny + c̃, 	̃2 = ũnx + ṽny, 	̃3 = ũnx + ṽny − c̃ (20)

and eigenvectors of the form
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The Roe average states ũ, ṽ and c̃ are given by
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Using the approximate Jacobian matrix Ã, the numerical flux can be transformed as

U= 1
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[
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]
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where 
̃k(k = 1, 2, 3) are the wave strengths as well as the coefficients of the decomposition in the
basis of eigenvectors of Ã

UR − UL =
3∑

k=1

̃k ẽk (24)

and are dependent on the jumps � = ( )R − ( )L in the functions:


̃1,3 = ��

2
± 1

2c̃
[�(hu)nx + �(hv)ny − (ũnx + ṽny)��] (25a)


̃2 = 1
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{[�(hv) − ṽ��]nx − [�(hu) − ũ��]ny} (25b)

3.4. High-order extension and limiters

The numerical integration with an upwind scheme described above leads to an approximation which
is only first-order accurate in space. A second-order van Leer’s MUSCL method extension [28] is
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utilized where the piecewise constant approximation is replaced by piecewise linear approximation
to reconstruct the state at the cell interface, i.e. UL and UR between node i and j

UL =Ui + 1
2∇Ui · ni j , UR =U j − 1

2∇U j · ni j (26)

A second-order approximation requires the evaluation of the gradient of the conservative vari-
ables at each vertex. Clearly, the gradient of a function vh of Vh is constant in each element and
discontinuous in the flow domain. Using a linear interpolation of the Galerkin gradients computed
in each triangle of Ci , the gradients ∇Ui can be given as

∇Ui =
∫
Ci

∇U d�∫
Ci

d�
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area(Ci )

∑
�,Pi∈�

area(�)

3

∑
k∈�

Uk∇��
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where k ∈ � means the loop of three vertexes on triangle �.
However, numerical oscillations may occur and are highly desirable to be eliminated when trying

to simulate flow discontinuities. The main techniques used to control or limit spurious oscillations
around discontinuities are to utilize artificial viscosity or make use of non-linear limiters. Slope
limiters suppress the numerical oscillations in a non-linear manner by prohibiting the generation
of any new local extrema when the conservative variables �, uh, vh are reconstructed at the cell
interface.

In order to maintain monotonicity, the non-linear limiters restrict the variables gradients discussed
previously, so that the cell interface state, i.e. UL or UR falls within the vertex variables in either
side of the cell interface. As a result, the second-order cell interface variables reconstruction is
limited in the following form:

UL =Ui + 0.5Lim((∇U)
upwind
i · ni j , (∇U)centi · ni j )

UR =U j − 0.5Lim((∇U)
upwind
j · ni j , (∇U)centj · ni j )

(28)

where

(∇U)centi · ni j = U j − Ui

(∇U)
upwind
i = 2∇Ui − (∇U)centi

and the non-linear limiter

Lim(a, b)= bmax
[
0,min

(
�
a

b
, 1

)
,min

(a
b
, �

)]
(29)

where the limiter parameter, �, is restricted to 1���2. In particular, � = 1 gives the minmod
limiter, and � = 2 gives the Roe Superbee limiter. Usually the super-bee limiter is less diffusive
and gives an excessively steep profile with some oscillation, while the minmod limiter produces
a relatively smeared profile and so is slightly dissipative. As the limiter increases in strength, it is
less diffusive but permits greater numerical oscillations [10]. In practice, the modified �-scheme
limiter is utilized, which falls in between the minmod and Superbee limiters and can give better
results

Lim(a, b)= bmax

{
0,min

[
2,min

(
1

3

a

b
+ 2

3
, 2

a

b

)]}
(30)
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3.5. Viscous fluxes discretization

Since the viscous part of the shallow water equations is parabolic, no oscillations can arise in
the diffusion dominated region. So the discretization is carried out with a classical Galerkin FE
P1 method which results in a centred-type scheme. For 1-D case, it is the same as the centred
difference discretization in code implementation. Since the approximation of the physical variables
is taken in Vh , the components of the stress tensor and those of ∇��

i are constant in each triangle.
Any function f and its gradient are interpolated over a finite element T by

f (x, y)|T = ∑
j∈T

f ( j)� j |T (x, y), grad f (x, y)|T = ∑
j∈T

f ( j)grad� j |T (x, y)= constant (31)

Consequently, the viscous fluxes are evaluated as

∑
�,Pi∈�

∫
�
R · ∇��

i d�= ∑
�,Pi∈�

area(�)

(
Rx�

���
i

�x
+ Ry

�
���

i

�y

)
(32)

where Rx� and Ry
� are constant values in the triangle �.

3.6. Conservative C-property and source terms

3.6.1. Conservative C-property. It is well known that for a stationary shallow water problem,

h + zb(x)= H = const and V= 0 (33)

where V is the velocity. A numerical scheme is said to satisfy the exact C-property [14, 16] if the
scheme can replicate the exact solution to the stationary flow problem (33).

For SWE with non-zero depth-splitting bed slope source terms, a general scheme with centred
approximation of the source terms does not satisfy the exact C-property and may give misleading
results as the source terms become significant. Bermúdez and Vázquez’s Q-scheme [16], and
Hubbard’s approach with source term decomposed [18] all satisfy the exact C-property and can
produce very accurate numerical results. Also, Zhou’s SGM [20] with a water surface elevation
reconstruction satisfies the exact C-property, and the numerical scheme only uses a simple centred
discretization for the source terms.

For SWE with elevation-splitting bed slope source terms, a general case of stationary problem
can be written as

� + hb(x) + zb(x)= H = const, � = const, V= 0 (34)

We use a consistent discretization of bed slope source terms

∫
Ci

Sb d� =
∫
Ci

g�

(
0,

�hb
�x

,
�hb
�y

)T

d�= g�i

∫
Ci

(
0,

�hb
�x

,
�hb
�y

)T

d�

= g�i
∑

j∈N (i)

∫
�Ci j

⎛
⎜⎜⎝

0

hbnx

hbny

⎞
⎟⎟⎠ d� (35)
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which in fact is a centred discretization for the source terms and satisfy the exact C-property.
Because of the stationary assumption (34), the interfacial reconstruction becomes �R=�L, hR = �R+
hb = hL, and UR =UL,FR =FL, then the numerical flux at the left

∑
j∈N (i)

∫
�Ci j

F · ni j d�
∣∣∣∣∣
�=const

= ∑
j∈N (i)

∫
�Ci j

⎛
⎜⎜⎝

0

g((� + hb)
2 − h2b)nx/2

g((� + hb)
2 − h2b)ny/2

⎞
⎟⎟⎠ d�

= g�i
∑

j∈N (i)

∫
�Ci j

⎛
⎜⎜⎝

0

hbnx

hbny

⎞
⎟⎟⎠ d�

is balanced with the bed slope source terms. This proves that the numerical scheme satisfies the
exact C-property, hence �= const and V= 0 are preserved. 1-D proof of conservative property is
one special case of two dimension which is neglected here.

3.6.2. Other source terms discretization. Besides the bed slope source terms should be balanced
with the gradient flux, the other source terms integration related directly with the velocity is
achieved by the classical FE manipulations:

∑
�,Pi∈�

∫
�
Sp�

�
i d� = ∑

�,Pi∈�

∫
�

∑
k∈�

(Sp)k�k�i d�= ∑
�,Pi∈�

∑
k∈�

(Sp)k

∫
�

�k�i d�

= ∑
�,Pi∈�

area(�)

(
(Sp)i + ∑

k∈�
(Sp)k

)
1

12
(36)

which gives second-order accuracy.

4. BOUNDARY CONDITIONS

4.1. Inflow, outflow and wall boundaries

The idea of using a Riemann solver to calculate the flux at the interface of a control volume can be
used in the description of inflow, outflow, and wall boundary conditions. The sufficient conditions
imposed at the boundaries combined with equations obtained from characteristics theory give the
information needed for the calculation of boundary flux.

Assuming that we can neglect the source terms and that the flux has a frontal behaviour, the
following Riemann invariants relationships can be obtained:

d

dt
R+ = d

dt
(u + 2c)= 0 on

dx

dt
= u + c (37a)

d

dt
R− = d

dt
(u − 2c)= 0 on

dx

dt
= u − c (37b)
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so u ± 2c is constant along u ± c, respectively; R− represents the state to the left, R+ that to
the right. At a boundary the right side is outside the domain. Hence, the interface variables at the
boundary can be obtained using the R− relationship:

unL + 2cL = un∗ + 2c∗ (38)

in which the subscripts L and ∗ indicate the left (inside) and interface variables. In general, the
normal flux may then be calculated using the boundary interface variables, namely

F(U∗) · n=

⎛
⎜⎜⎝

h∗un∗

h∗un∗u∗ + g(h2∗ − h2b)nx/2

h∗un∗v∗ + g(h2∗ − h2b)ny/2

⎞
⎟⎟⎠ (39)

where un∗ = u∗nx + v∗ny .
(1) Supercritical inflow: All the variables h∗, u∗, v∗ must be imposed and no numerical boundary

conditions are needed.
(2) Sub-critical inflow: The tangential velocity v∗ and another variable must be imposed. When

the water depth h∗ is imposed,

un∗ = unL + 2
√
g(

√
hL − √

h∗) (40)

When the velocity un∗ is imposed,

h∗ = ((unL − un∗)/2
√
g + √

hL)2 (41)

When the discharge q = h∗un∗ is imposed, c∗ can be obtained by solving iteratively equation

2c3∗ − (uL + 2cL)c2∗ + qg= 0 (42)

(3) Sub-critical outflow: One variable must be imposed using the above formulations.
(4) Supercritical outflow: None of the variables must be imposed and

u∗ = uL, v∗ = vL, h∗ = hL (43)

(5) Wall boundary: un∗ = 0 in (39) is imposed for slip wall and u�∗ = v∗nx − u∗ny = 0, un∗ = 0
for no-slip wall.

4.2. Non-reflecting boundary condition

A useful downstream boundary condition is an outlet boundary which imposes no influence on the
fluid in the domain. This is a non-reflecting boundary condition and the amplitude of the incidence
wave does not vary with time. Corresponding to the characteristic lines of the inward and outward
waves, the following equation [29] is utilized:

�
�t

(un ± 2c) + (un ± c)
�
�n

(un ± 2c)= gh(So − S f ) (44)
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For the inward characteristic line un − c, according to the assumption that the wave amplitude is
invariable, the derivative �/�n = 0. The resulting equations are

�
�t

(un − 2c) = 0

�
�t

(un + 2c) + (un + c)
�
�n

(un + 2c) = gh(So − S f )

(45)

In this way, the values in the (n + 1)th time-step are directly deduced from the values in the nth
time-step and do not need the temporal interpolation.

5. TIME INTEGRATION

The time integrating scheme utilizes a two-step predictor–corrector sequence. So the whole method
is a conservative second-order accurate, high-resolution, upwind scheme of the Godunov type

Un+1/2
i voli =Un

i voli − �t

2
(RHS)ni (46a)

Un+1
i voli =Un

i voli − �t (RHS)
n+1/2
i (46b)

where

(RHS)ni = ∑
j∈N (i)

F(UL
i j ,U

R
i j )

n · ni j + ∑
�,Pi∈�

[
�Rn · ∇��

i +
(

(Snp)i + ∑
k∈�

(Snp)k

)
1

12

]
area(�)

(47)

and the flux function F(UL
i j ,U

R
i j )

n is evaluated by solving a local Riemann problem at each cell

interface, and UL
i j ,U

R
i j are the vectors of conservative variables at the left and right sides of the

cell interface between node i and j , respectively.
The scheme proposed here is an explicit scheme which is restricted by a CFL-like time-step

condition:

�t =Ct min

(
lmax

|V| + c
,
l2max

2�
,

1

2g|V|/(c2h)

)
(48)

where Ct is the Courant number (0<Ct�1).

6. ONE-DIMENSIONAL NUMERICAL VERIFICATION

In this section, the FV/FEM for 1-D SWEs is verified by solving the state-of-the-art benchmark
problems for SWE source terms treatment. The consistency and accuracy are demonstrated by
comparing the numerical results with the analytical solutions and available numerical results.
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6.1. Tidal wave flow over an irregular bed

A tidal flow over an irregular bed proposed at a workshop on dambreak wave simulations [30] is
presented to validate the method to solve the flow over an irregular bed topography. The same bed
topography zb(x) is shown in Figure 3 and also used by Vázquez-Cendón [17] for verification of
an upwind discretization of the bed slope source terms. The channel length is L = 1500 m. The
initial and boundary conditions are

h(x, 0) = H(x), H(0) = 16, H(x) = H(0) − zb(x) (49a)

u(x, 0) = 0 (49b)

and

h(0, t) = H(0) + 4 − 4 sin

[
�

(
4t

86 400
+ 1

2

)]
(50a)

u(L , t) = 0 (50b)

Under these conditions, the tidal wave is relatively short and an asymptotic analytical solution is
derived by Bermúdez and Vázquez [16] as

h(x, t) = H(x) + 4 − 4 sin

[
�

(
4t

86 400
+ 1

2

)]
(51a)

u(x, t) = (x − L)�

5400h(x, t)
cos

[
�

(
4t

86 400
+ 1

2

)]
(51b)

To compare the numerical result with the asymptotic analytical solution, we choose the time
t = 10 800 s and �x = 15 m based on 100 cells, which correspond to the half-risen tidal flow
with maximum positive velocity. Figures 3 and 4 show the comparison of surface and velocity
between the predicted numerical result and analytical solution. Excellent agreement confirms that
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Figure 3. Tidal wave flow over an irregular bed: comparison of water surface (100 cells).
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Figure 4. Tidal wave flow over an irregular bed: comparison of velocity (100 cells).

the proposed method is accurate for the numerical simulation of SWEs with a simple centred-type
discretization of bed slope terms. In fact, the result validates that the consistent numerical scheme
using surface elevation splitting balances the flux gradients and source terms.

6.2. Steady flow over a 1-D hump

A 1-D steady flow along a 25 m long 1-D channel with a hump defined by

zb(x)=
{
0.2 − 0.05(x − 10)2 if 8 m<x<12 m

0 otherwise
(52)

is a classical benchmark problem with analytical solution [30], which was also used by Vázquez-
Cendón [17] and Zhou et al. [20] to test their schemes for the bed slope source terms. The boundary
conditions determine the flow states which can be sub-critical, transcritical with or without a shock,
or supercritical. The boundary conditions here are chosen to induce transcritical flow with a shock
in order to verify effectiveness of the numerical scheme to predict discontinuous solution over a
non-uniform bathymetry. Thus, the discharge per unit depth of q = 0.18 m2/s is specified at the
upstream boundary and the depth of h = 0.33 m is imposed at the downstream boundary. The
numerical domain is uniformly discretized in space using 200 cells. The bed is frictionless and
there is no eddy viscosity.

Figures 5 and 6 show the converged steady-state numerical predictions of the water depth and
discharge along the channel. The numerical result agrees well with the analytical solution, except
at near the location of the shock which may also be observed in the results reported elsewhere
[17, 18, 20]. To assess the convergence history, Figure 7 shows the global relative error which is

defined [20] as R =
√∑

i ((h
n
i − hn−1

i )/hni )
2. These results indicates that the proposed method

using surface elevation form can predict the discontinuous flows over irregular bed topography
accurately, even though we used the simple centred-type discretization for source terms.
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Figure 5. Steady-transcritical flow over a hump with a shock: water surface elevation.
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Figure 6. Steady-transcritical flow over a hump with a shock: comparison of discharge.

In order to check the accuracy properties of the numerical scheme, we apply it on the steady sub-
critical flow where the analytical solution is symmetric about the hump. The discharge
q = 4.42 m2/s is specified at the upstream boundary and the depth of h = 2 m is imposed at
the downstream boundary. Table I gives the convergence rate results, which indicate the numerical
scheme is nearly second order of accuracy.
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Figure 7. Steady-transcritical flow over a hump with a shock: convergence history.

Table I. Accuracy of the scheme for steady flow over a hump.

N L2(h) error L2(h) order L2(u) error L2(u) order

50 2.27× 10−4 3.61× 10−4

100 6.59× 10−5 1.78 9.74× 10−4 1.89
200 1.77× 10−5 1.90 2.59× 10−5 1.91
400 4.61× 10−6 1.94 6.82× 10−6 1.92

7. TWO-DIMENSIONAL NUMERICAL RESULTS

7.1. Dam break problem

In order to validate the scheme for the inviscid part of the SWEs and its ability to simulate
discontinuous flows, the dam break test problem is examined. A square box of 200× 200m2 with
a horizontal bed is divided into two equal compartments each measuring 200× 100m2. The initial
still water depth is 10m on one side and 5m on the other side of the dividing wall. At time t = 0,
the dividing wall is instantaneously opened a distance of 75 m, as depicted in Figure 8. A bore
then moves downstream as water discharges from the higher to the lower level. At the same time,
a depression wave moves in the opposite direction. The problem domain is triangulated into 3646
cells (1929 vertexes and lmax ≈ 5m) and computational model is run for up to 7.2 s after the dam
break. Figures 9 and 10 show the 3-D view of the water surface elevation and the contour plot
of water depth, respectively. These results agree with those reported in the literature [7, 14], and
nearly give the same flow structure using high-resolution limiters [31]. As the figures show, the
capturing of the downstream hydraulic jump is good and limited in two or three-triangle width.
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Figure 8. Definition and domain grid for dam break test.
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Figure 9. Water surface profile at t = 7.2 s after breaking of dam.
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Figure 10. Contour plot of water surface elevation for dam break test.
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Figure 11. Definition and domain grid for jet-forced flow.

7.2. Jet-forced flow in a circular basin

A further case for testing the momentum diffusion and advective terms is examined which simulates
a jet-forced flow in a circular basin. Large vorticity gradient is generated near the interior corners
of the inflow and outflow stems. The circular basin (see Figure 11) has a diameter of 1.5 m,
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Figure 12. Velocity field at steady state for jet-forced flow.
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Figure 13. Streamfunction contour plot for jet-forced flow.

a uniform still water depth of 0.1 m, and symmetric inlet and outlet stems of width 0.156 m. The
non-slip wall boundary condition is used, the bed stress is set to zero and the kinematic eddy
viscosity is set to 0.00078m2/s, and the inflow velocity is 0.1m/s, which corresponds to an inlet
Reynolds number of 10.

For this test case, the computational domain is triangulated into 5356 cells. The velocity vector
distribution at steady state is given in Figure 12 and the streamfunction plot is shown in Figure 13.
The flow separates after entering the basin, and symmetric vortices are produced in either side of
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the fluid region, their centres displace slightly towards the inlet side of the basin. The upper vortex
is anticlockwise, and the lower clockwise rotating. The overall flow pattern is in close agreement
with those obtained in the literature [10, 21]. This test confirms the ability of the method to model
the recirculating viscous flow within a geometrically complicated domain.

7.3. Quasi-stationary cases

A quasi-stationary test case introduced by LeVeque [19] is chosen to demonstrate the capability
of the proposed method for computation involving small perturbations of the water surface. The
channel has a length of 1.0 and the bed topography is defined by

zb(x)=
{
0.25[cos(�(x − 0.5)/0.1) + 1] if |x − 0.5|<0.1

0 otherwise
(53)

with hb(0) = 1 and g= 1. The initial condition is the stationary solution u = 0 and

h(x)=
{
1.0 − zb(x) +  if 0.1<x<0.2

1.0 − zb(x) otherwise
(54)

Many numerical methods have difficulty with the calculations involving such small perturbations
of the water surface [19]. The present solution (400 cells, Ct = 0.2) at time t = 0.7 for  = 0.01 is
shown in Figure 14, including a comparison with that of LeVeque [19] (1000 cells). It is shown that
the new method can provide a solution of accuracy comparable to that obtained by a high-resolution
Godunov-type method based on balancing the source terms and flux gradients.
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Figure 14. Quasi-stationary case: comparison of water surface elevations for = 0.01.
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Figure 15. 2-D wave propagation past a circle hump: 3-D view of water surface.
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Figure 16. 2-D wave propagation past a circle hump: water surface contours.

Further test case is included in comparison with 2-D results obtained by Leveque [19]. The
computation domain is [0, 2]× [0, 1] with a 2-D hump in the middle

zb(x, y)= 0.8 exp(−50((x − 0.9)2 + (y − 0.5)2)) (55)

The disturbance splits into two waves, propagating left to leave the domain and right over the
hump with the characteristic speeds ±√

gh. In order to resolve the waves, the non-reflecting
boundary conditions are applied at x = 0 and 2. Figure 15 shows the 3-D surface plot obtained
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on an almost uniform 23 487 nodes, 46 372 cell triangular grids (Ct = 0.4) at time t = 1.5, and
Figure 16 displays the corresponding contour plot. The plots indicate that the present solution is
not polluted by unphysical numerical perturbations and agrees closely with the results obtained by
LeVeque [19] and Hubbard and Garcia-Navarro [18]. These test cases show that the present method
is able to handle small surface perturbation problems with the smoothly varying bathymetry.

8. CONCLUSIONS

A vertex-centred FV/FEM has been developed for solving 2-D SWEs with source terms written
in a surface elevation splitting form, which balances the flux gradients and source terms naturally.
The method is as simple and efficient as the conventional Godunov-type scheme for inviscid flows,
and enables the source terms to be discretized with a centred-type like discretization scheme which
satisfies the exact conservation property. The proposed procedure fully retains the conservative
property of the parent FV method. The method has been successfully applied to a selection of
steady and unsteady problems. The results indicate that the new method is accurate, simple, and
robust. Further research will focus on the practical applications with complex topography.
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